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KANT’S THEORIES OF SPACE AND TIME IN 19TH CENTURY 
PHYSICS AND PHYSIOLOGY 

DAVID HYDER 

Abstract. This paper considers the 19th c. dispute between thinkers such as Hermann von 
Helmholtz, who claimed that modern mathematics and sense-physiology refuted Kant on ge-
ometry, and neo-Kantian defenders of Kant, who held that the normative role of geometry in 
physical science placed it beyond empirical investigation. It is argued that 20th c. critics of 
Kant’s theories of mathematics, by following the latter approach, thereby misunderstand the 
wide scope of Kant’s original claim. They interpreted these earlier debates epistemologically, as 
concerning the difference between the “natural” and the “normative”, whereas the fundamental 
issue was metaphysical, even if it had important methodological consequences. By contrast, the 
present paper focuses on the role of the ideality of space and time, while remaining fully within 
the scientific context. 
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INTRODUCTION 

For 19th c. natural scientists, Kant’s principal contribution to knowledge was his 
theory of the ideality of space and time. This theory was developed, above all, by his 
successors in Berlin, and, at least later in the century, in Göttingen. Nevertheless, it had 
already been fundamentally modified by the 1840’s at the hands of Johannes Müller 
and Friedrich Trendelenburg, and then by their respective students, most importantly 
Hermann von Helmholtz. These philosophers and natural scientists were open to the 
possibility that the external world might have any dimensionality, so that the ideal 
space and time of the subject’s experience would merely be a “cut” through this multi-
dimensional space. In consequence, the distinction between “physiological” and “tran-
scendental” interpretations of Kant’s theory that became standard at the end of the 
century had little meaning for them. The calibration of internal and ideal space was the 
first step that any scientist had to make in order to isolate, as Helmholtz put it, “that 
content of our experience that we intuit as not produced through the self-activity of our 
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faculty of representation.” This project presupposed a specification of three founda-
tional sciences that were so produced: the theory of time [Zeitlehre], geometry and pure 
mechanics1. 

Yet, beginning already in the mid-19th century, this form of naturalized Kantianism 
came under heavy fire by the philosophers who are now generally referred to as 
“Neo-Kantians”. The dispute centered on Helmholtz’s claims that modern mathematics 
and sense-physiology showed that Kant was wrong about geometry and the theory of 
space, since non-Euclidean geometries were conceivable, and, therefore, it could not be 
said a priori which of the various geometries of constant curvature was correct. The 
neo-Kantians responded that Helmholtz and others simply did not understand that, since 
the role of geometry in physical science is normative, it is beyond empirical investiga-
tion. This same position was maintained by 20th American Kant scholars such as Gary 
Hatfield2, and, more recently, Frederick Beiser3. The aim of this paper is to refute that 
criticism, both in its historical forms and in this more recent work, by considering in 
greater detail the doctrines and arguments that were actually at issue in mid-nineteenth 
century German academia. It will be suggested that, instead of approaching these authors 
through the normative/natural dichotomy typical of epistemology, we examine their met-
aphysical commitments, beginning with Kant’s own claims regarding space and time. 

The paper has four main sections. In the first, I discuss what I take to be Kant’s 
original and foundational doctrine, namely the claim that space and time are not proper-
ties of the mind-independent world. I distinguish this view from the metrical convention-
alism developed late in the century, which replaced this far-reaching metaphysical thesis 
with a metrological one. I suggest that 20th c. critics of Kant’s first wave of interpreters 
thereby misunderstand the wide scope of Kant’s original claim. In particular, they view 
19th c. debates epistemologically, as concerning the difference between the “natural” and 
the “normative”, whereas the fundamental issue is metaphysical, not methodological. In 
section 2, I propose a classification of pre-and post-Kantian views on the nature of space 
and time according to the dimensionality of the mind-independent world. 

Newtonians proposed that it was intrinsically 3+1 dimensional. Kant, I suggest, 
thought that it had no dimensionality, because the things in themselves are intrinsically 
unrelated simples. Kant’s first wave of rigorous interpreters, for instance Trendelen-
burg and Helmholtz, working within the tradition of generalized mechanics developed 
by Euler and Lagrange in Berlin, assumed that its dimensionality could be arbitrarily 
great. For them, four-dimensional space-time was merely a cut through a world of 
yet-unknown structure. In the third section, I emphasize how this same tradition of ana-
lytical mechanics, from 1788 onwards, assumed that all basic mathematics was to be 
 

1 Hermann von Helmholtz, “On General Physical Concepts”, in S. Luft (ed.), The Neo- Kantian 
Reader, London, Routledge, 2015, p. 6. 

2 Gary Hatfield, The Natural and the Normative: Theories of Spatial Perception from Kant to 
Helmholtz, Cambridge, Mass.: MIT Press, 1990. 

3 Frederick Beiser, The Genesis of Neo-Kantianism, 1796–1880, Oxford, Oxford University Press, 
2014. 
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conducted algebraically, thereby consigning the constructive methods of Kant and his 
idol, Euler, to history. The circularity objection that underlies most modern versions of 
the conventionalist-normative defence of Kant’s views, beginning with the first critics 
of Helmholtz, is therefore misplaced. For both Riemann and Helmholtz developed their 
arguments within analytic, not Euclidean geometry. And Kant, as an Eulerian, also 
sought to provide foundations for analytic geometry, for which Greek geometry pro-
vided only basic lemmata. I then turn, in section 4, to the wave of late nineteenth-
century neo-Kantian criticisms of Helmholtz’s and Riemann’s work, who were respon-
sible for the development of the metric-conventional reinterpretation of Kant’s theory 
towards the end of the 19th c. 

1. KANT’S DOCTRINES OF SPACE AND TIME  
IN HISTORICAL PERSPECTIVE 

The cornerstone of Kant’s philosophy is his thesis that time and space are ideal. 
Without that assumption, the spatio-temporal order of events would reflect relations 
among things in themselves. This would damage the critical system on two levels. 
Since global causal determinism would be metaphysically possible, the will might turn 
out to be unfree. Conversely, skeptical doubts about the existence of this same 
determinism would be unanswerable, meaning that Kant’s proof of his law of causality, 
intended to refute Hume, would fail. A person who sought to defend our use of such a 
principle would then have only two options: they could interpret it as a hypothesis 
about mind-independent reality; or they could argue that we are hardwired to think this 
way. Since neither of these alternatives can exclude that the world will not conform to 
our expectations, Kant’s theory would then collapse on either speculative metaphysics 
or physiological nativism. Thus, as Kant himself emphasizes, rejection of the Aesthetic 
entails the failure of the Analytic. 

For this reason, the first wave of his interpreters, in East Prussia, Berlin, and Göt-
tingen, took it for granted that the Aesthetic propounds the fundamental claim of the Cri-
tique. Kant, his contemporaries and immediate successors all saw him as someone 
concerned with providing logical foundations for the programme of analytical mechanics 
that characterized physics in Berlin and Göttingen in the 19th c., the very context in which 
authors such as Helmholtz, Carl Friedrich Gauss, Felix Klein and Bernhard Riemann 
worked. They interpreted his work as that of an Eulerian, who was trying to reconcile 
Newtonian absolutism to Leibnizian relativism by means of a radically new theory of 
space, time and motion4. As such, they took it to be obvious that the theories of space and 
 

4 For instance, during his lifetime, the German translator of Euler’s Institutiones calculi differentialis, 
Johann Michelsen, prefaced the translation (Leonhard Euler’s Vollständige Einleitung zur Differential-
Rechnung. Erster Theil, in Johann Michelsen (ed. and tr.), Berlin, Lagarde und Friedrich,1790) with a long, if 
tedious, philosophical introduction, linking Euler’s work point-to-point with Kant’s theory of mathematics, and 
thereupon sent a copy to the aging Kant. Michelsen taught mathematics at the Gymnasium zum grauen Kloster 
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time were fundamental to the project, and that the ideality of time, in particular, was a re-
flection of Kant’s Leibnizian background. Whatever the interest of the Dialectic, and the 
doctrine of transcendental freedom, it all comes to naught if time is real. For, Leibnizian 
monads are timeless and closed individuals, and while they may well have a complex in-
ner structure, it cannot, in principle, be known by another (timeless and closed) monad. 
The moment that there are genuine causal interactions between substances in time, this 
form of Leibnizian isolationism is no longer tenable. 

By contrast, nineteenth-century interpreters were skeptical of the doctrines of the 
Analytic precisely because they seemed to depend on quite arbitrary features of Kant’s 
“General Logic”, which the author admitted having cribbed from 18th c. logic manuals. 
Writers such as Lange and Frege took Kant’s logic to be badly defective, yet they contin-
ued to see value in a transcendental approach. That is, they did not abandon the view that, 
because our access to things in themselves is blocked, reason can construct systems for 
thinking about the world that will be binding on all future experience. In contrast to their 
20th c. successors, they took the Analytic to stand in need of almost complete renovation, 
but their justification for holding that view was that the claims of the Aesthetic were, in 
the large, correct, even if Kant had been wrong about the status of Euclidean geometry. 

Today, by contrast, many philosophers take an exactly contrary view, arguing that 
Kant’s claims concerning geometry are defensible, while the thesis of the ideality of time 
and space is absurd. It is customary to oppose Kant’s “transcendental” theory of space 
and time to its degenerate successors, that is to say the “physiological” interpretations of 
that theory proposed towards the beginning of the 19th c. by thinkers such as Trendelen-
burg, Lotze, Müller, and Helmholtz, as well as, later in the century, by Lange. The Aes-
thetic, to the extent that it is read at all, is of interest only insofar as it sheds light on the 
notion of synthetic a priori truth, and only the sections on space are discussed. Leading 
commentators, such as Paul Guyer, deny that it contains a parallel doctrine concerning 
time, while asserting simultaneously that if it did, it would be worthless5. 

It is during this same, recent past that the metaphysical content of Kant’s theory of 
space and time—that they are properties of the mind, and not of the world— has been 
largely replaced by a quite different doctrine, namely the metrical conventionalism of 
Henri Poincaré. In this sense, one can argue that the 20th century took the value, if any, of 
Kant’s book to lie in the Transcendental Analytic, while the Aesthetic itself is an embar-
rassing relic to be purged, or, still better, ignored. This is a most peculiar development, 
when one considers that, over this same century, a large portion of the physical commu-
 
in Berlin from 1778 until the end of his life in 1797. The Berlin elite who attended this Gymnasium during the 
last decades of the 18th century was, in other words, taught Eulerian mathematics from the point of view of 
Kant’s Critique. And this was, indeed, correct, for Kant owned works of Euler’s and he demonstrably used 
these works at a quite sophisticated level when formulating key passages of the Metaphysical Foundations of 
Natural Science. 

5 Paul Guyer, Kant and the Claims of Knowledge, Cambridge, Cambridge University Press, 1987, 
345f, p. 375. Guyer argues that there is no science parallel to geometry in the case of time, that Kant’s theo-
ry of time is almost entirely derivative of that of space, and therefore merits no separate treatment. 
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nity came to see both classical space and time as human constructs. In other words, oppo-
sition to Kant’s thesis of the ideality of time and space among philosophers has been 
most pronounced during the very period in which it was finally confirmed. Writers such 
as Hatfield and Beiser followed this neo-Kantian approach, which developed as a coun-
ter-reaction to the physiological tradition. They took the content of the Aesthetic to be 
“transcendental” and, to use Hermann Cohen’s term, “negative”. But this “transcenden-
tal” theory of space is in fact the metrical conventionalism just alluded to, while the phys-
iological theories that are rejected are those which stand closest to Kant’s actual view. 
Contemporary interpreters who approach Kant in this way are, in other words, using a 
family of concepts and principles that evolved in the late 19th c., and which should have 
been seen as decisively refuted by 1915 at the latest, as I shall explain in the following. 

Since the split between the two approaches played a decisive role in the later po-
lemics against psychologism that defined philosophy’s position within late 19th century 
universities, the standard arguments are still familiar today. On the one hand, one has the 
programme of empiricist naturalism, possible augmented by Darwin’s theory, which ar-
gues that human thought, the object of Aristotle’s Psychology, is a physical process like 
any other, and should be studied with the methods of biology, sense-physiology and psy-
chology. Arrayed against this approach are the works and arguments of transcendental 
foundationalists, such as Cohen and Frege, who objected that psychological laws of 
thought merely describe how people do think, whereas the objects of logic and geometry 
are normative. Logic, construed as the science of the “laws of thought”, should not de-
scribe how people do think, but prescribe how they ought to. To confuse the two is to 
commit a naturalistic fallacy, which can arise within any of the normative sciences, in-
cluding geometry, logic, ethics, and, according to some, economics6. 

From this vantage, the works of early naturalizing Kantians reflect trivial misun-
derstandings, which can indeed be dismissed on a priori grounds. Commenting on 
Hermann von Helmholtz’s detailed analysis of the epistemology of geometry in his 
1878 Rektoratsrede, “The Facts in Perception”, Frederick Beiser summarizes their er-
ror as follows: 

On the whole, Helmholtz’s 1878 lecture, for all its interest and importance, has to be 
judged a failure. Its shortcomings derived less from any particular doctrine or argu-
ment than from its entire programme, from its attempt to base Kant’s philosophy up-
on science. That had not only led to a distorted and contorted interpretation of Kant’s 
theory of space, but it had also misunderstood the aims of Kant’s transcendental phi-
losophy, which cannot be grounded on natural science if its purpose is to investigate 
its very possibility. As Helmholtz spoke in Berlin on that August day in 1878 his 
programme had already grown old. The younger generation of neo-Kantians – Otto 

 
6 As is well known, post-war American philosophy came to invert this relation again, in that thinkers 

such as Quine, who had ingested the naturalist view indirectly from pragmatists such as Peirce, rejected the 
neo-Kantian foundationalism of Carnap and Wittgenstein, arguing yet again that there are no necessary 
thought-connections and that foundational questions concerning the structure of thought must only be ap-
proached through empirical psychology. 
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Liebmann, Hermann Cohen and Wilhelm Windelband –had already challenged his 
interpretation of Kant and the entire programme behind it. We shall eventually see 
how, at their hands, the Helmholtzian programme came to grief.7 

The problem with this research programme, in other words, was that it failed to 
understand that the a priori conditions of empirical investigation – logic, geometry, and 
the theory of time – cannot themselves be empirically investigated. If logic is 
presupposed by all thought, then any attempt to “verify” it would require that we 
already accept its normative authority. Similarly, to verify empirically which of two 
geometries was valid for physics, as Helmholtz and Riemann had suggested one might, 
is to saw at the branch one is sitting on. Poincaré, who put this argument in its canoni-
cal form, concluded that our use of Euclidean geometry was therefore immune to 
empiricist criticisms. In order to enquire into the validity of a geometry, one would 
have to take into account the possible actions of distortive forces, yet the concept of 
such forces is parasitic on one’s kinematics, thus the investigation would have to begin 
by assuming the validity of one of the geometries under investigation8. 

Helmholtz would be – and was – deeply puzzled by this type of objection. He 
took his work on the foundations of geometry to represent an extended investigation of 
the conditions of the possibility of spatial measurement. This was clearly a 
transcendental investigation, in Kant’s terms – one which eventually led, through his 
contacts with the young Felix Klein, to the Erlangen programme, group-theory, etc. 
Had he lived slightly longer, he would no doubt have taken the opportunity to refute 
Poincaré by pointing to Einstein’s 1915 publications. For, barely fifteen years after 
Poincaré made his claims, Euclidean geometry had been finally rejected on empirical 
grounds. How is it then, that a century later, the programme of investigating Kant’s 
claim that geometry was synthetic a priori has come to be seen as a failure?  

Note first that Beiser is not referring to the above-mentioned research 
programme, whose “particular doctrines and arguments” he regards are irrelevant. 
Rather, his claim that Helmholtz’s programme came to grief rests on the standard neo-
Kantian objection that Helmholtz confuses a normative question (quid juris) with an 
empirical one (quid facti). Whereas the question that drove Helmholtz was not whether 
science involves metrological norms, but rather which norm to apply, and according to 
what criteria? To reply to someone with such concerns that they fail to understand that 
metrology is normative is like reassuring a man who has been condemned on false 
evidence that his sentence was, by definition, a case of jurisprudence. It is to argue that 
since the observance of some norm, even one arbitrarily chosen, is a condition of the 
possibility of judgment, or of measurement, no such norm can ever be in error. In the 
following section, I will propose a different way of categorizing the authors mentioned 
above, which rests on different metaphysical and mathematical interpretations of the 
theories of space and time that emerged over this period. 
 

7 F. Beiser, The Genesis of Neo-Kantianism, 1796–1880, p. 205. 
8 See the concluding discussion of this paper and footnote 20 for similar claims regarding the depend-

ence of time-measurement on conventional geometry. 
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2. THE DIMENSIONALITY OF THE MIND-INDEPENDENT WORLD 

In particular, I will propose the following classificatory model. Whereas a realist 
interpretation of Newton’s physics ascribes a four-dimensional structure to the world, 
Kant ascribes it zero-dimensionality. His 19th century successors, by contrast, working 
within the programme of generalized mechanics, believed that it might have many more 
spatial dimensions than Newton, perhaps indeed an infinite number, just as they believed 
in the reality of motion. Since, for them, three-dimensional spatial intuition was, quite 
literally, a projection-plane embedded within a higher-dimensional manifold, it could be 
approached from two different, though ultimately equivalent, directions. 

For the researcher who experienced the world subjectively in this way, knowledge 
of the topological and metrical characteristics of the spatial and temporal manifolds was a 
first step towards understanding the mind- independent systems whose effects appeared 
within them. But this same researcher, having constructed a physical model of the exter-
nal world, would inevitably come to view these same manifolds from another angle. Just 
as we first learn about colours as elements of our subjective experience, and later come to 
understand that they are generated by our physiology, so the physiologist of space will 
eventually redescribe the space of his subjective experience as “due to the self-activity of 
our faculty of representation”. To tell such a person that his first concern – to understand 
the metrical properties of his representational space – is undermined by his conviction 
that this space is subjective is then a curious non sequitur. It must seem – and it did seem 
to Helmholtz – as if someone had criticized his work on the metric of the colour-space by 
saying that because colours are the condition of (visual) experience, the structure of the 
colour-space cannot be investigated by empirical means. 

While this characterization may seem loaded against the neo-Kantian critic, it 
actually points at the true kernel of the latter’s position. For, one’s natural response is to 
argue that there is an absolute difference between the manifolds of space and time, on 
the one hand, and perceptual manifolds like the colour-space, on the other. The latter, 
as a sensory manifold, is empirical and material. Whereas the theory of pure intuition 
has a transcendental function. It explains the possibility of the a priori sciences of time, 
space and motion (Phoronomy), and, since these are foundational for physics and for 
all sciences that rest on physics, they (and they alone) cannot be investigated by means 
of physics. To make the same point intuitively: when our analysis of the colour-space is 
complete, that space will not form part of the description, for the latter will talk about 
the physical causes of colours – wavelengths and amplitudes – and it will talk about the 
neurological structures that map light stimuli onto neural states (nerve energies), but 
neither of these will be described in terms of colours. Whereas, the manifolds of space 
and time cannot be made to vanish in this way. To use the metaphor popular through-
out the 19th century, we can take off our colour-spectacles, but not our spatial ones. 

While the young Helmholtz certainly did not deny a foundational role to the sci-
ences of time, space and motion, he and his colleagues still did not draw this conclu-
sion, for the reasons laid out at the opening of his first two papers (1868a, 1868b) on 
geometry: by using analytic methods, we can free ourselves from the apparent circular-
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ity just described. Employing the best physical theories at our disposal, we describe 
physical systems in the external world and then seek to characterize the physical mean-
ing of perceived spatial intervals in terms of their functional dependence on differences 
between states of their physical stimuli. Since both descriptions will be algebraic, nei-
ther description depends essentially on the form of spatial perception any more than, in 
the case of colours, the descriptions were dependent on our subjective experiences of 
colour. The algebraic descriptions of the external systems are inevitably provisional, 
and they will change as physical theory evolves. But this is not an obstacle to progress 
– on the contrary, it is the typical case in empirical science. 

Since the research programme Helmholtz imagined is alive and well, having 
scored some recent successes of just the sort he predicted, it is unnecessary to speculate 
on whether such a programme is feasible. On the contrary, its success allows us to see 
quite clearly why the circularity charge is intuitively compelling. For, one can argue, fur-
ther research into the physiology of spatial perception is indeed irrelevant to physics, just 
as predicted. Questions regarding the metrical structure of space-time are not investigated 
through sense-physiology, just as, to the extent that someone investigated our perception 
of that structure, the results would be largely irrelevant to space-time physicists. So, the 
kernel of truth in this criticism of the physiological approach to spatial intuition would be 
that this manifold plays a foundational role for all science, whereas similar physiological 
structures (e.g. the manifolds of colours, or of acoustic tones) do not. Thus, they are im-
mune to such a circularity objection, while the theory of space is not. 

Note, however, that since the subjective manifold of Euclidean three-space is not 
identical with what theorists such as Helmholtz and Gauss took to be the framework of 
the mind-independent world, the distinction just drawn is not absolute. Assuming that 
both the world and the subject’s perceptual apparatuses are characterized algebraically, 
the special status of the spatial metric can be maintained only to the extent that it plays a 
constitutive role in the description of the mind-independent world910. And, once our 
foundational principles are purely algebraic, it is only the theory of pure quantity that 
plays such a role. In other words, once the visual and tactile space has been degraded to 
being merely psychological, there is no longer any reason to seek foundational principles 
in its structure, and the free choice involved in our constructing a geometry reflects our 
new-found (if quite un-Kantian) independence in this regard. Questions can of course 
arise concerning the suitability of this choice for achieving our goals; however, they will 
not be settled by means of physiology or introspection, but rather by considerations of 
 

9 In his first publication (1868a) on the topic, Helmholtz overlooked the possibility of pseudospherical 
space, and did indeed conclude that Euclidean geometry was constitutive in this sense – no alternative could be 
constructed. However, he quickly reversed himself on this question, arguing later that the existence of pseudo-
spherical geometries proved that Euclidean geometry does “not follow from the general concept of an extend-
ed quantity of three dimensions and of the free mobility of bodies…” (H. von Helmholtz, ”The Origin and 
Meaning of Geometrical Axioms I”, in Mind, vol. 1(3), 1876, pp. 301–321, p. 314). 

10 Schiemann points out – correctly in my view – that such a constitutive role can be ascribed to the 
differential, which is in the limit Euclidean. A similar role could be ascribed to the Hilbert space (Gregor 
Schiemann, Hermann von Helmholtz’s Mechanism: The Loss of Certainty, Dordrecht, Springer, 2009). 



9 Kant’s Theories of Space and Time in 19th Century Physics and Physiology 185

economy (Zweckmässigkeit), within logical constraints (Zulässigkeit). The foundational 
component is thereby reduced to logic and algebra, considered as the pure theory of 
quantity. 

3. THE ROLE OF ALGEBRA 

Trendelenburg, Müller, and other early 19th century Kantians of a scientific bent 
pursued a realist version of his philosophy, which did not deny the reality of time, ac-
cepted the Law of Causality as a condition on realism, while denying the existence of 
Newtonian absolute space. Helmholtz, as the most prominent of all of these naturalizing 
Kantians, was unrelenting in his criticisms of Kant’s doctrine of space, not because he 
was either a naïve realist, nor a naïve empiricist, but because he thought it quite likely 
that the world had more than three spatial dimensions. This view was a natural conse-
quence of the theory of generalized coordinates that Euler and Lagrange had developed 
in Berlin, meaning that physicists of Helmholtz’s generation no longer worked within a 
simple Cartesian three-space. We can pinpoint the event that separates Kant from his 
immediate followers within the natural sciences, namely the 1788 publication of La-
grange’s Analytical Mechanics. Lagrange, who was Euler’s hand-picked successor at the 
Académie in Berlin, announced his break with all his predecessors, including Euler, in 
the Avertissement: “One will find no figures in this work. The methods that I develop re-
quire neither constructions, nor geometrical nor mechanical reasoning, but only algebraic 
operations, subject to a regular and uniform pace [marche].”11 

In other words, whereas both Euler and Kant had ascribed evidentiary value to 
“constructions” of the basic magnitudes of physical theory (space, time and motion), the 
next generation took it for granted that the language of science, including geometry, was 
algebraic. From this point forwards, the tools of the scientific foundationalist were almost 
exclusively conceptual, and the appearance of schemata, figures, and constructions in 
Kant’s theories of mathematics and physics were seen to be outmoded. Helmholtz, like 
Trendelenburg before him, took it for granted that the foundational science was what had 
previously been called the “pure theory of quantity”, namely algebra. And so, for him, 
while Kant was entirely correct in worrying that the mathematical structure of the mind-
independent world was not Newtonian, the philosopher was entirely mistaken in thinking 
that this form of spatial intuition could yield principles that were anything more than pro-
visional. Indeed, Helmholtz emphasized that the importance of analytic geometry to his 
geometrical investigations was that it freed us of any dependence on intuition. For him, in 
other words, there was virtually no difference between the case of colours and the case of 
visual space. Thus he differed metaphysically not only from Kant, but just as well from 
the later neo-Kantians who criticized him. 
 

11 The last sentence puns on Lagrange’s and Frederick the Great’s shared obsession with clocks, and 
the regular conduct of one’s life. Thematically, it emphasizes that the ultimate standard of regularity is the 
conceptual notation of algebra itself, here compared to a regiment (Joseph-Louis Lagrange, Méchanique 
Analitique [sic.], Paris, Desaint Lagrange, 1788, vi). 
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Returning to the taxonomy introduced above, we can easily see where the differ-
ence to Kant lies. Helmholtz, as a student of Müller and Trendelenburg, took it for grant-
ed that there was a mind-independent world of unknown dimensionality, and that we 
could come to know about its structure through experimentation, because we could caus-
ally interact with it. Kant, by contrast, admitted the existence of this world, but main-
tained that it had no cognizable structure. Kant’s things in themselves are, one might say, 
unrelated X’s, all of whose knowable properties are subject-relative. Typical of such 
moderate nominalism, Kant does not claim that we know that these X’s lack intrinsic 
properties, merely that supposing they do is an empty gesture. For, all their empirical 
characteristics derive from our awareness of their effects on our sense-organs and our 
measuring instruments. Similarly, while Kant does not prohibit applying the Law of Cau-
sality to objects outside of spatio-temporal intuition, he holds that all “unproblematic” 
applications of the law require that causes and effects be situated in the spatio-temporal 
manifolds. Thus, there is no way of reasoning, even inductively, to the underlying, non-
spatio-temporal world, even if, for all we know, the noumena are monads with complex 
inner structures. The phenomenal world of spatio-temporal events, on the other hand, is 
entirely knowable, since it is deterministic and causally closed. 

Physiologists such as Helmholtz and his circle, the Physikalische Gesellschaft 
zu Berlin, were, in this sense, aiming to complete a project that had been on the table 
since Descartes. They wanted to describe the workings of the human organism, in-
cluding thought itself, in mechanical terms. And, in doing so, they were not targeting 
Kant or Leibniz, but rather Descartes and Berkeley – thinkers who believed in a hu-
man soul, distinct of matter. Kant himself expected that such a theory would come to 
fruition, for, indeed, it would make little sense to write the Critique of Pure Reason 
unless one did.12 Because they were realists, they took it for granted that there were 
correspondence-relations between intuitional representations and the physical sys-
tems they imaged. In an early phase of research, we may have to accept the internal 
structure of these representational systems “as is”, for instance when we take it for 
granted that differences in shades of colours represent objective relations in the world 
(e.g. relations between different properties of light), without being able to say in ad-
vance exactly what these are. But, as our knowledge of light and of our physiology 
progresses, we may identify exactly what this relation consists in. At the final stage, 
we may completely reduce our experience of the colour-space to the actions of light 
on receptors with known sensitivities. Yet we will continue to inhabit a coloured 
world, and the relations between colours will remain a fixture of our experience, just 
as they were before the investigation began. 

Furthermore, the physical science that preoccupied Helmholtz and the coming 
generations was electromagnetism. Thus he did not believe that Newtonian mechanics 
provided a final representation of things in themselves, and had no intention of limiting 
himself to Kant’s closed set of conceptual resources. Classical space-time, even in 
 

12 Cf. KpV, Ak. 5.99. 
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Kant’s relativistic form, was a representation-space forced on us by our physiology, but 
that did not mean that we could not transcend it. Doing so, however, meant boot-
strapping. For, in order to discover the underlying physiological mechanisms that 
might explain, for instance, how we came to perceive a higher-dimensional world as 
merely three-dimensional, we would first have to construct a mechanical theory within 
Lagrangian mechanics, then do the sense-physiological research within that mechanical 
framework, and eventually, by shuttling back and forth, adjust our assumptions 
concerning both domains. For such 19th century thinkers, which included a large 
number of “phenomenological” physicists up until the move to atomism at the turn of 
the century, idealism was a conservative heuristic, since they knew that they did not 
know what the fundamental constituents of reality might look like. 

In sum, for scientists working within the Berlin physical tradition13, foundational 
questions were to be settled by algebraic methods, while questions concerning what 
Kant had called the “pure forms of intuition” were to be investigated empirically. It 
thereby became quite common to endorse a dual perspective on the world, as 
exemplified, for instance, in the concluding sections on Helmholtz’s last (1878) paper 
on geometry, where he mounts his argument twice: first in the voice of realism, second 
in that of phenomenology. The latter perspective stays within subjective experience, 
and regards the mind-independent world as real and knowable, even if filtered by the 
mathematical framework we apply to it, including time, space, and the law of causality. 
The former perspective takes that framework as a provisional description of the mind-
independent world, and seeks to understand the thinking subject as a physiological 
object embedded in that mechanical world. This means, in turn, that the “validity” of 
intuited relations between internal states can be investigated from two points of view. 
From the realistic, physiological one, to say that an intuited relation is valid means that 
it reliably reflects a relation between external states (relations between intuited colour-
intervals and wavelength-differences; relations between intuited distances and their 
‘topogenous moments’). From the idealistic, transcendental one, to say that an intuited 
relation is valid means that it is a reliable predictor of future events (relations between 
intuited colours and future measurements of wavelengths; relations between intuited 
distances and the future evolution of systems). 

4. THE NEO-KANTIAN BACKLASH 

After his publication, in 1868, of two technical papers concerning the foundations 
of geometry, Helmholtz became embroiled in disputations with Kantian philosophers 
across Europe, which led to two subsequent publications focused on their objections. The 
most sophisticated and influential of these papers was published in 1871/72 by Otto 
 

13 By this I mean the research programme at the Berlin Academy of Sciences that was initiated by 
Euler, and carried forward by Lagrange on the mathematical side, and Lambert and Kant within philosophy 
of science. 
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Liebmann, one of the philosophers who, according to Beiser, sealed Helmholtz’s fate. 
Helmholtz, in an 1876 edition of his popular scientific lectures, substantially rewrote an 
earlier paper to counter the objections of Liebmann and others. This same article was 
published in Mind the same year, and occasioned a response from the Dutch philosopher, 
J.P.N. Land. The general pattern of neo-Kantian objections is already clearly evident in 
Land’s paper, which begins by pointing out the “fundamental error… of positive sci-
ence”, which is that in physics “we must adopt a standard of truth, which in philosophy is 
the very thing to be settled”14. 

Liebmann’s 1871 “On the Phenomenality of Space” was somewhat more sophisti-
cated, and does indeed seem to have affected Helmholtz enough to inspire its own re-
joinder, in the form of his (1876) “The Origin and Meaning of Geometrical Axioms I”. 
For, in that paper, Helmholtz specifically attacks philosophers who would claim that, de-
spite his purely algebraic proofs demonstrating that there are several possible systems of 
homogeneous spatial magnitudes (geometries of constant curvature), one can still defend 
the position that human intuition is necessarily Euclidean. That position was explicitly 
advanced on the last pages of Liebmann’s paper, where he summarized his view in four 
theses: (1) the space of sensible intuition is a subjective phenomenon, (2) the pure space 
of Euclidean geometry is an intellectual construction, (3) we do not know if the trans-
cendent (mind-independent) organization of the world is “commensurable” with our spa-
tial intuition, (4) it can be affirmed with certainty that “within our consciousness, which is 
bound to this spatial intuition, we intuit empirico-phenomenal things and events, with re-
gard to their size, shape, position, direction, distance and speed, in just the way that it oc-
curs in every intelligence that is homogeneous to us”15. That is to say, Liebmann, who 
himself acknowledged that Gauß and Helmholtz held it possible that the mind- inde-
pendent world had more than three spatial dimensions16, nevertheless did not conclude 
from their work and that of Riemann that the non-logical content of geometry17 was due 
to experience. Rather, he took these analyses to strengthen Kant’s claim, in that they 
clearly displayed the fact that our form of spatial intuition was on the one hand a contin-
gent property of the human organism, in the sense that we could imagine intellects that 
lacked it, while it remained a necessary property of our representations of the world. 

As stated, the problem is essentially Cartesian. We have certain inner represen-
tations, and we have an outer, transcendent world. Among the inner representations are 
those of geometry, whose truths are known clearly and distinctly, but from this it does not 
follow that the material world, should it exist, conforms to these geometric truths. As 
Descartes did not entertain the idea of alternative geometries, for him this question 
reduced to the problem of showing that there is a material world characterized by the 
unique property of extension. 
 

14 J.P.N. Land, “Kant’s Space and Modern Mathematics”, in Mind 2(5), 1877, pp. 38–46, p. 38. 
15 Otto Liebmann, „Uber die Phänomenalität des Raumes“, in Philosophische Monatshefte 7 (8):337–

359, 1871/1872, pp. 358–59. 
16 Ibidem, p. 355. 
17 For instance, Pythagoras’ Theorem. 
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Showing this was showing that “geometry is applicable to experience”. In the 19th 
century version, by contrast, the question is at first glance more straightforward: assum-
ing that there is a world that has the structure of a multi-dimensional manifold, is our in-
ternal representation of a three-dimensional Euclidean manifold “commensurable” with 
that world? A subsidiary question thereby emerges, concerning the structure that we find 
ourselves compelled to ascribe to our internal spatial representations: are they necessarily 
Euclidean, or, as Helmholtz argued, are they partly the result of inductive choices? These 
two questions correspond to Liebmann’s points 3 and 4, above. He concludes that we do 
not know, indeed we may never know, whether our internal geometry is commensurable 
with the external one. But we do know that our internal geometry is Euclidean. 

It is common, even today, to argue that Helmholtz was exclusively interested in 
this last question: Can we imagine alternative geometries?18 But, as was just mentioned, 
Helmholtz’s first two technical papers on the subject are purely logico-mathematical, and 
explicitly eschew the epistemological question regarding the source of our geometrical 
knowledge. To the extent that anything is “imagined” in these papers, it is imagined by 
means of algebra. That he came, in later papers, to focus on the question of imaginability 
is the result of his engaging Kantians like Liebmann and Land, who sought, as we just 
saw, to draw their line of defence just here. The holder of such a fall-back position 
(Liebmann) assumes that since the commensurability of inner and outer can never be 
independently verified (we are stuck in our heads), a proof of the unimaginability of 
alternative geometries seals the matter. 

In fact, Helmholtz was interested in a much more straightforward question: Is Eu-
clidean geometry valid? That is to say, he began to doubt that, as he had argued as a 
young man, the certainty of “the general or pure natural sciences (theory of time, geome-
try, pure mechanics) … is an absolute one”19. And he had a quite straightforward under-
standing of what that question means: a geometry is valid when the homogeneous 
magnitudes that it defines (congruent intervals measured with rigid bodies, congruent 
spatial figures, etc.) form equivalence classes. Moreover, while it is common to argue, 
since Poincaré, that the validity of geometry cannot be verified at all, Helmholtz believed 
that it could be verified twice over, the two different ways corresponding to the two dif-
ferent, yet ultimately equivalent, perspectives mentioned above. Realistically, one could 
wonder whether the internal geometrical equivalence classes mapped onto external ones. 
Idealistically, one could verify whether the internal equivalence classes were what he 
called “physically equivalent” magnitudes. Such magnitudes are those in which the same 
 

18 Thus De Kock argues that “To get a firm grasp of the stakes of this debate, it should first of all be 
noted that Helmholtz’s primary concern was not theoretical in nature i.e., it did not pertain to the purely log-
ical or mathematical possibility of alternative spaces—but psychological… Given Helmholtz’s psychologi-
cal perspective, his main argument against Kant’s a priori account of space (qua Euclidian geometry) 
pertained to the imaginability [Vorstellbarkeit] of alternative spaces for beings whose powers of reason are 
quite in conformity with ours’” (Liesbet De Kock, “Helmholtz’s Kant Revisited (once More): The All-
pervasive Nature of Helmholtz’s Struggle with Kant’s Anschauung”, in Studies in History and Philosophy 
of Science, vol. 56, 2016, pp. 20–32, p. 26). 

19 H. von Helmholtz, “On General Physical Concepts”, p. 6 
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processes unfold in the same time, and in order to ascertain whether this is the case, we 
do not need to leave the internal domain20. 

Now, when one focuses one’s attention on Liebmann’s list of properties, one no-
tices a chronological development. The first three (size, shape, position) are the Aristo-
telian categories that characterize the res extensa. The last three (direction, distance and 
speed), on the other hand, are the determinants of modern kinematics, in particular the 
content of the Phoronomy of Kant’s Metaphysical Foundations of Natural Science. 
These three are, therefore, connected to time. And, while it seems quite straightforward 
to ask, with respect to the notions of shape and distance, whether external objects are 
“commensurable” or “congruent” with their internal representations, it is not obvious 
what it could mean to say that speeds and directions are so. For Kant, of course, the lat-
ter question had no more meaning than the first – the mind-independent world has ze-
ro-dimensionality, and verifies no metrical relations. For Helmholtz, by contrast, this 
temporal relation was in fact the only sense in which the internal world was “like” the 
external one: 

We cannot even call sense impressions pictures; for a picture depicts the same 
through the same. In a statue we represent bodily form through bodily form, in a 
drawing, the perspectival view of an object through the same in the picture, in a 
painting, colour through colour. 

We can call sensations pictures of the process of events only with respect to the 
flow of time. Under the determinations of the flow of time falls number. In these 
relations they therefore yield more than would mere signs.21 

That is to say, to speak of correspondences, in the sense of similarity, between 
mind and world is fruitless, unless we are talking about quantitative relations. And 
quantitative relations amongst our sensations also do not correspond, through similarity, 
to the external world. Rather, they express measurable functional dependencies between 
events. For instance, two shades of red do not correspond univocally to anything in the 
external world—not even wavelengths, for our eyes adjust to lighting conditions. But the 
 

20 Schlick in (Helmholtz, Schriften zur Erkenntnistheorie, in P. Hertz and M. Schlick (eds), Berlin, 
Springer, 1921, p. 173) and, following him, Hatfield (op. cit., pp. 222, 336), have both argued that this defini-
tion of physically equivalent magnitudes is circular because there is no way of defining “equal time” without 
assuming a spatial metric to begin with. Similarly, Friedman (Michael Friedman, Kant’s Construction of Na-
ture, Cambridge, Cambridge University Press, 2013) has recently argued that Kant advances no mathematical 
concept of time in the Transcendental Aesthetic, since the latter can only be defined through the laws of motion 
and the Principles that undergird them. The view derives from the conventionalism of Poincaré, which the ear-
ly logical empiricists took to be Einstein’s own view. I see no evidence that Einstein held that view—he criti-
cized Poincaré’s position as holding only “sub specie aeterni”, and often observed that, e.g. “it is no petitio 
principii to posit the notion of a periodic process … when one is clarifying the empirical content of the time-
concept” where “this conception is entirely complementary to the preceding notion of a rigid or quasi-rigid 
body in the interpretation of space”. (A. Einstein. „Physik und Realität“, in Journal of the Franklin Institute, 
vol. 221 (3), 1936, pp. 313–347, p. 322). At no point is it suggested that the former depends conceptually on 
the latter. It seems equally unlikely that Helmholtz, or Kant before him, would have accepted this objection, 
and not because they were unaware of it. 

21 Helmholtz, 1892, p. 47. 
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difference, that is to say the temporal variation, between two colours records a difference 
in the stimuli that caused them. Time, motion and number22 are the only internal 
elements that correspond to something external, and it is only in connection with them 
that an internal geometry can correspond to an external one. 

These two perspectives on the question of validity are developed independently 
in Helmholtz’s last paper23 on the “space problem”, which was published in Mind as a 
response to Land, but also as an Appendix to the German publication of the “Facts in 
Perception”: 

II. In this second section I will start from the position that Kant’s hypothesis of the 
transcendental origin of the geometrical axioms may be correct though not 
proved…. I will also, in the first instance, adhere to the realistic hypothesis and 
speak its language, assuming that our sensible impressions are caused by things re-
ally existing in space and acting upon our senses.…I regard this view of things, 
however, expressly as hypothetical, and I mean afterwards to drop the realistic hy-
pothesis in my third section, when I will repeat my exposition in abstract language, 
without any assumption as to the nature of real existence. 

First of all, we must distinguish between equality or congruence of space-magni-
tudes as dependent on the assumption of transcendental intuition, and their equiva-
lence as determined by measurement with physical instruments. 

I call physically equivalent those space-magnitudes in which under like condi-
tions and within like periods of time like physical processes take place. The process 
most commonly employed, with due precautions, for the determination of physically 
equivalent space-magnitudes is the transference of solid bodies from one to the other, 
that is to say, measurement with compass and rule.24 

III. The discussion in the second section has been confined to the objective sphere, 
and conducted from the realistic point of view of natural science, whose aim is to 
comprehend or grasp conceptually the laws of nature. Towards this end perceptive 
knowledge is either only a mere help or, as the case may be, a false show to be got 
rid of.…let us now drop out of sight the hypothetical element in the realistic 
view….The only assumption we still maintain is that of the law of causation, to the 
effect, namely, that all mental states having the character of perception that come 
to pass in us do come to pass according to fixed laws, so that when different per-
ceptions supervene we are justified in inferring therefrom a difference of the real 
conditions determining them.25  

 
22 Helmholtz’s views on this question evolved over the years. At the time he wrote his first two papers 

on geometry (1868a, 1868b) he also argued that only mathematical descriptions could bridge the external and 
internal; however, he included space among these. By the 1890s, in part because of the arguments he devel-
oped in his debates with Land and Liebmann in the 1870s (discussed above), space was eliminated. Yet, even 
in his early writings, time is privileged over space in this way. Similarly, Trendelenburg (Logische Unter-
suchungen. vol. 1) had insisted that what was common to mind and world was only motion, and that both time 
and space were merely “factors” of this motion, that is to say, dependent magnitudes. 

23 H. von Helmholtz, “The Origin and Meaning of Geometrical Axioms II”, in Mind, vol. 3(10), 
1878, pp. 212–225. 

24 Ibidem, p. 217. 
25 Ibidem, p. 222. 



 David Hyder 16 192

Note first the definition of “physically equivalent magnitude”, which is assumed 
throughout the rest of the paper. Two spatial magnitudes are physically equivalent 
when identical processes unfold within them in the equal periods of time. Helmholtz 
had used a similar definition already in his earliest writings on this topic, for instance in 
his unpublished manuscript, “On General Physical Concepts”, where he defines two 
objects as equal “in a relation if [one] can be substituted for the other everywhere 
where the result of a combination is considered only with respect to this relation”26. 
Equal times, he continues, are ones “in which the same changes take place under the 
same circumstances”27, while equal distances are determined by the transport of rigid 
bodies. Inertial paths, in turn, are straight lines traversed by bodies in states of uniform 
motions. That is to say, equal times are the equivalence classes determined by clocks, 
equal spaces are the equivalence classes determined by rigid bodies, and since the 
“uniformity” of what he calls “stable motions”, requires that bodies trace out equal 
spatial intervals of “straight lines” in equal times, equal spatial intervals as measured by 
rigid bodies are also equal intervals of uniform, or inertial paths. 

At the time he wrote “On General Physical Concepts” (<1847), Helmholtz 
himself assumed that these two definitions – rigid-body congruence, equal segments of 
inertial paths – would coincide. Even the first versions of his 1868 papers on geometry 
continue to argue that there is only one possible system of homogeneous spatial 
magnitudes. By contrast, the fundamental assumption under attack in this mature work 
from the 1870s is that we know a priori that these two definitions of equal spatial 
intervals must agree: 

Taking the notion of rigidity thus as a mere ideal, a strict Kantian might certainly 
look upon the geometrical axioms as propositions given a priori by transcendental 
intuition which no experience could either confirm or refute, because it must first 
be decided by them whether any natural bodies can be considered as rigid. But 
then we should have to maintain that the axioms of geometry are not synthetic 
propositions, as Kant held them: they would merely define what qualities and de-
portments body must have to be recognized as rigid. 

But if to the geometrical axioms we add propositions relating to the mechanical 
properties of natural bodies, were it only the axiom of inertia or the single proposi-
tion that the mechanical and physical properties of bodies and their mutual reac-
tions are, other circumstances remaining the same, independent of place, such a 
system of propositions has a real import which can be confirmed or refuted by ex-
perience, but just for the same reason can also be got by experience. … If such a 
system were to be taken as a transcendental form of intuition and though there 
must be assumed a pre-established harmony between form and reality.28 

That is to say, one can maintain that any arbitrary geometry is “valid”, insofar as 
one takes it to be a metrological stipulation of what counts as rigid. But, for the 
 

26 H. von Helmholtz, “On General Physical Concepts”, p. 7. 
27 Ibidem, p. 8. 
28 H. von Helmholtz, “The Origin and Meaning of Geometrical Axioms I”, pp. 320–21. 
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physicist, this is just a first step29. As in his manuscript from 1847, the regions of space 
parceled out by rigid body measurement have a meaning for physics: they must be the 
segments that a body in inertial motion traces out in equal periods of time; or, put 
otherwise, they must be the magnitudes that are invoked in kinematics, such as the 
Phoronomy of Kant’s Metaphysical Foundations. 

Assuming that a stipulated geometry will satisfy this requirement is assuming a 
“pre-established harmony” between these two different definitions of equal spatial 
magnitude. 

The two perspectives Helmholtz develops at the end of his 1878 paper merely 
cash out this “pre-established harmony” argument in two different ways. Looked at 
from the point of view of the physicist and physiologist, the question is whether, and 
how, we could know “that space-magnitudes equal to one another in transcendental 
intuition are also physically equivalent”30, given that, using Beltrami-style projections, 
we can construct coordinate-systems agreeing to multiple geometries within the same 
manifold of experience. Looked at from the phenomenological point of view, 

When we observe that the most diverse physical processes may go on during equal 
periods of time in similar fashion at different but congruent parts of space, the real 
meaning of such a perception is, that there may be in the sphere of reality equal se-
quences and aggregates of hylogenous moments combining with certain distinct 
groups of topogenous moments, which latter we then call physically-equivalent. 
We may thus discover by observation what special figures appearing in our per-
ception correspond with physically-equivalent topogenous moments; and experi-
ence tells us that they are equivalent for all physical processes.31 

That is to say, under the premise that our perceptions are caused by something (a 
premise which Kant himself seems to affirm on the first page [B33] of the Critique) 
and that motion is real, the same question – how we know that a stipulated geometry 
gets physical equivalence right – has an only slightly different significance. From the 
phenomenological perspective, it now means: How do we know that “the equality of 
the perceived distance and the physical equivalence of the distance depend on the same 
function of the topogenous moments or not?”32 (my emphasis) Put in the terms of our 
colour-examples, Helmholtz is therefore asking: How do we know that perceived 
differences in colour variations always depend on a variation in, e.g., the wavelengths 
of the causes, which itself counts as equivalent in all other physical circumstances? 
How do we know that what we perceive as an equivalence class actually will behave 
like one? 

We note, in conclusion, that both of these forms of the argument depend 
essentially on the concept of a physically equivalent magnitude, which itself depends 
 

29 This step is strictly analogous to, for instance, the choice of a particular lump of metal and weigh-
ing technique in order realize the concept of mass. Whether or not these choices will yield a homogeneous 
dimension of mass is a second point for reflection. 

30 H. von Helmholtz, “The Origin and Meaning of Geometrical Axioms II”, p. 219. 
31 Ibidem, p. 224. 
32 Ibidem, p. 225. 
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on the notion of “equal times”. Since geometry only becomes meaningful to physics in 
its connection to time, to ask whether a geometry is valid for experience is essentially 
to ask whether it parcels the world into magnitudes that are homogeneous in temporal 
relations. To the extent that someone argues that we can have immediate knowledge of 
the nature of such equivalence classes, they must explain, when confronted with 
multiple, and incompatible classes, how this could be known in advance, and this 
cannot be done, whether one is a realist or an idealist. 

5. CONCLUSION 

We began with a simple question. How is it that an obviously successful research 
programme, which changed our understanding both of “internal” and “external” geome-
tries comes to be represented as an abject failure? The criticism, as we saw, is that the re-
searchers in question did not understand that geometry, as a normative science, is 
immune to any future revision, because, as Land put it, in “physics we must adopt a 
standard of truth, which in philosophy is the very thing to be settled”. But that supposi-
tion holds only if one believes that the mind-independent world is fundamentally unstruc-
tured, or, more conservatively, that there is no structure that is common to that world and 
our subjective experience of it33. Kant did make this strong claim, and thus he could con-
sistently argue that his a priori foundations were irrefutable. Since the world is filtered 
through these a priori structures, there simply cannot be any experiential data at odds 
with them. 

But the moment this assumption is dropped, the possibility of such a defence 
collapses. If time and motion are, as Trendelenburg argued, common to mind and 
world, then we can correlate “internal” events and relations with causes in that world, 
to which end we do not require a final account of its structure. Furthermore, since we 
can formulate our descriptions of both worlds in terms of numbers and algebraic 
equations, no vicious circle is implied. Since neo-Kantian critics, both then and now, 
approach these questions purely epistemologically, they overlook the fact that this very 
epistemological approach depends on the above metaphysical thesis – the very one 
addressed at the opening of this paper. 

If space and time are not exclusively ideal, then questions of correspondence, 
congruence and “commensurability” may be posed and answered. This is – in fact – 
what happened in the 19th century, and the result was a fundamental revision to our 
theories of the internal manifolds (as reflected in contemporary work on the physiology 
of space-perception), and, shortly afterwards, a fundamental revision to our theories of 
the external manifolds as well. And this means, in turn, that the present dislocation of 
 

33 That Kant did not show that spatial intution must be exclusively ideal is usually referred to as 
“Trendelenburg’s excluded alternative.” If I have not discussed this thesis in the preceding, then only be-
cause it is only the starting point for Trendelenburg’s, Müller’s and Helmholtz’s programme, albeit one 
which occasioned rather much discussion within 19th c. Kant scholarship. 
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these two fields – the physiology vs. the physics of space and time – does not support 
the claim that metrological (or other) norms cannot be empirically investigated and 
refuted. On the contrary, this dislocation is a direct consequence of the fact that they 
were so investigated, and this by the very people who, according to the neo-Kantians 
and their modern apologists least understood the significance of their own work: 
Helmholtz, Riemann and Klein34. 

 
34 It should not be concluded from the above that only scientific approaches to Kant’s work are of 

interest, and still less that only scientists correctly understood his work. The moral is far simpler: those who 
read the works of scientifically literate philosophers such as Kant must ensure that their understanding of 
his work is mathematically at least as sophisticated as his own. Unfortunately, this cannot be said of a single 
major Kant scholar since the 1890s, after which point it became customary to read his mathematics through 
the Hellenistic tradition. 


