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Abstract. I highlight how questions of indispensability and questions of the empirical 

content of mathematical theories, although different, can fruitfully inform one another. 

After elaborating on what it might mean to say that mathematical theories enjoy empirical 

content, in terms of the modal status of mathematical truths, the confirmation of applied 

mathematics, and the explanatoriness of applied mathematics, I argue that modal or 

confirmational terms are not appropriate for establishing whether mathematical theories 

enjoy empirical content. Where explanation is concerned, I suggest there is a variety of 

different kinds of mathematical explanation, and so if empirical content of mathematical 

theories is conceived of in terms of explanation, then there is a variety of ways in which 

mathematical theories may come to possess empirical content. Consequently, we have to 

ask which portions of mathematics are indispensable in the best current explanation of 

which empirical phenomena. In doing so, which theory of explanation is espoused plays 

a major role in the assessment of whether mathematics is explanatory or merely 

representational or descriptive.  
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explanatory power 

§1. INTRODUCTION 

In this paper, I will explore what it might mean to say that mathematical 

theories lack empirical content. I will address the notion of empirical content in three 

ways: in a possible-worlds semantics, in terms of confirmation, and in terms of 

explanation. These are not meant to be exact reconstructions of the notion of content, 

but only aspects of empirical content that mathematical theories may enjoy or lack. 

I will conclude by suggesting that neither a possible-worlds view nor a confirmation 

view of content is apt to ascribe empirical content to mathematics, but that empirical 

content for mathematics might be found by a more careful appraisal of the 

explanatory aspects of mathematical applications to empirical science. 

I will connect the discussion about the empirical content of mathematical 

theories with the debate about whether mathematics is indispensable for the success 

of empirical science. Whether mathematics has any empirical content, and whether 

empirical science contains ineliminable mathematical content, are two different 

questions. However, I purport to show that the two questions are closely related, and 
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some views about indispensability have important consequences for the empirical 

content of mathematics. 

Quine’s seminal work “Two Dogmas of Empiricism” (1950) already contains 

elements that allow the formulation of an argument purporting to show that 

mathematics is indispensable for the success of empirical science. Here is a 

reconstruction of that argument: 

(1) Our best physical theories make an indispensable use of mathematics.  

– Indispensability 

(2) The confirmation of a theory is wholesale, and since theories require 

much mathematics, confirmation includes the mathematical parts of the theory. 

– Quine’s Confirmational Holism and 

(3) Our theories are committed to those things taken to be values of the 

variables our theories quantify (existentially) over. – Quine’s Criterion of 

Ontological Commitment. 

It follows that once we adopt a physical theory, we are committed to the 

existence of mathematical objects. (Bangu 2008, fn.1) 

As Bangu notes, if all premises are granted, it follows that belief in the truth of 

the currently best physical theories commits the believer to the existence of abstract 

mathematical objects quantified over in those theories. Moreover, premise (2)  

states that “confirmation includes the mathematical parts of the theory”, so the 

mathematical parts of an empirical theory come to enjoy just as much empirical 

content as the theoretical parts of empirical science. This symmetry between 

scientific realism and Platonism (challenged by Sober 1993, p. 37) can be seen as a 

consequence of the absence of an analytic-synthetic distinction (Quine 1950), 

because one can no longer claim that truths of mathematics are analytic, whereas 

truths of physics are synthetic, since they all enjoy the same confirmation from 

observation. If this is correct, then, in Quine’s view, the empirical support of 

mathematical theories stands or falls with the indispensability of mathematical 

portions of theories of empirical science. 

§2. MODAL VIEWS OF MATHEMATICS AND EMPIRICAL CONTENT 

Many have been reluctant to share Quine’s premises. For example, commitment to 

abstracta is not favored by nominalists. So identifying loci of disagreement would 

be served if the same indispensability conclusion could be arrived at from weaker 

premises. One especially attractive move has been to draw a distinction between 

necessary and contingent that could also distinguish mathematics from natural 

science. Whereas it is logically possible for the universe to have had different laws 

or to have evolved differently, Cresswell (2006, p. 143) explicitly states that  

“all mathematical truths are true in all possible worlds”. If this were true, and if 

empirical content were contingent, then no mathematical theory could ever enjoy 

empirical content. But this reasoning is too quick. 
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I would like to raise a worry about the claim that all mathematical truths are 

necessary, which seems to be doing most of the work. Consider the first-order theory 

K2 of densely ordered sets with neither first nor last element (Mendelson 2010,  

ex. 2.67, p. 91). In spite of its name, K2 carries no specific commitment to sets,  

but only to whatever satisfies its set of axioms in any given first-order model. Here 

is a feature of K2. Because of its density axiom (h), K2 is modeled by the rational 

numbers (Mendelson, p. 106). However, if axiom (h) were replaced with its negation, 

the new axiomatic structure – call it K2’ – would be modeled by the integers. So here 

is a case where we have a proposition (h) true at some worlds and false at others, that 

makes a difference for what objects satisfy K2 and K2’. So it seems to be false that 

(in general) all mathematical truths are truths that hold in all possible worlds1. 

What I wish to suggest by the K2 example is not that modal approaches to 

mathematical truth and existence are untenable, but only that they would require 

considerable elaboration before they could serve to sever the connection between 

mathematical portions of an empirical theory and the confirmation or disconfirmation of 

that theory. If so, then (a) the affirmation or denial of the claim that mathematical 

theories enjoy empirical support has to be sought elsewhere, and (b) the notion of 

empirical content of mathematical theories could be explained differently. 

§3. CONFIRMATION AND THE EMPIRICAL CONTENT  

OF MATHEMATICAL THEORIES 

Perhaps the empirical content of mathematical theories (if any) could be cast 

in terms of empirical confirmation. That is, a mathematical theory would enjoy 

empirical content inasmuch as it would be able to be confirmed in empirical testing. 

This would happen whenever a mathematical theory would be applied as part  

of a theory belonging to empirical science in such a way that that empirical theory 

could not receive a mathematics-free formulation that was as virtuous (adequate, 

parsimonious, simple or explanatory) as the mathematical formulation. Seeing 

empirical content of mathematical theories this way is, again, a way to connect the 

issue of mathematical empirical content with the issue of indispensability of 

mathematics to empirical science. 

If confirmational holism is completely renounced, this prevents mathematical 

theories from being seen as receiving support via empirical confirmation of their 

physical, biological, etc. applications. But as Vineberg (1996) points out, this in itself 

does not imply that mathematical theories have no empirical content. Rather,  

the issue of their content is left undecided. 

However, if, in addition to rejecting confirmational holism, a symmetry 

assumption is endorsed, then the conclusion that mathematical theories lack 

empirical content follows. Here is how I would summarize an argument present in 

Sober (1993, pp. 49–51): 

                                                           
1 Notice (h) is a closed formula and is either true or false for any model of first-order logic. (h) 

says that:  “(∀ x1)(∀ x2)(x1 < x2 ⇒ (∃ x3)(x1 < x3 ⋀  x3 < x2))”.  
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(1) A theoretical hypothesis (mathematical or otherwise) can be confirmed 
only if it can be disconfirmed as well. That is, we can say an observation 
supports a hypothesis only if had the complementary observation obtained,  
the hypothesis would have been disconfirmed. 

(2) When observations disagree with theories of mathematical physics  
(or biology, etc.), we do not blame the mathematics for the empirical theory’s 
disconfirmation. 

Therefore, 
(3) Mathematical parts of empirical theories are not confirmed by 

observations confirming the empirical theories they are part of. 

What this argument does is enforce, in premise (1), a symmetry between 
confirmation and disconfirmation, and then say in premise (2) that we do not blame 
mathematics for disconfirmation, concluding that we should not praise mathematics 
for confirmation. At a minimum, this shows there is no necessary reason why, once 
one rejects confirmational holism, one should apportion any of the confirmation 
received by an empirical theory to its mathematically indispensable parts. 

If the symmetry condition were imposed, the argument successful, and if 
empirical content were cast in terms of confirmation and disconfirmation, then 
mathematical theories would not enjoy empirical content. What I wish to suggest is 
resisting the assimilation of empirical content to confirmation in testing. Avoiding 
this assimilation is important because there seem to be other ways in which 
mathematical theories can enjoy empirical content, namely, via their capacity to 
explain empirical phenomena that occur and that fall under the purview of theories 
that include applied mathematics. 

This line of thought is also present in Colyvan (2014, p. 72), for whom 
approaching indispensability arguments through the theory of confirmation misses 
something essential. Colyvan seems to agree that mathematical truths are not the 
kind of thing that can be confirmed or disconfirmed, but he points out several uses 
that mathematics may have when applied: 

 There are several possibilities here: 
(i) Mathematics can demonstrate how something surprising is possible  

(e.g. stable two-species population cycles). 
(ii) Mathematics can show that under a broad range of conditions, something 

initially surprising must occur (e.g. hexagonal structure in honeycomb). 
(iii) Mathematics can demonstrate structural constraints on the system,  

thus delivering impossibility results (e.g. certain population abundance cycles 
are impossible). 

(iv) Mathematics can demonstrate structural similarities between systems 
(e.g. missing population periods and the gaps in the rings of Saturn). (Colyvan 
2014, p. 72) 

So the suggestion put forward is that the explanatory power of mathematics, 
when applied as part of an empirical theory, may sometimes be a legitimate way to 
confer empirical content to applied mathematics. If this is the case, then even if the 
conclusion (3) of the argument above were true, mathematical theories could still 
enjoy empirical content via their explanatory power. 
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§4. VARIETIES OF MATHEMATICAL EXPLANATION 

If inquiry into the empirical content of mathematical theories is to proceed via 

the explanatory role that may play in some of its empirical applications in which it 

is indispensable, some clarification is in order concerning what it might mean to 

ascribe indispensability to mathematical portions of an empirical account of 

phenomena. Quine (cited in Maddy 1992, p. 278) argues that, from his standpoint, 

mathematical ontology is condoned by the simplifications it affords of, and 

applications it has in, empirical science. But certainly not any applied mathematics 

may be in-principle indispensable, even though it may be extremely helpful 

computationally or heuristically (Azzouni 1997, p. 194; Batterman 2010, p. 10).  

And indispensability cannot be read literally. For example, Field (1980, pp. 30–41) 

argued that some portions of analytic geometry could be dispensed with in a 

formulation of the Newtonian mechanics (and captured back by representation 

theorems). Yet such a procedure would be less explanatory than the ordinary way of 

presenting Newtonian mechanics, namely, by using the powerful resources of full 

Hilbert-style geometry. So, as Baker (2009, p. 613) remarks, some mathematical 

applications are indispensable in the sense of being more explanatory than any 

mathematics-free alternative explanations. 

This immediately raises the question of what it might mean for mathematical 

applications to assume a genuinely explanatory role2. If, by the preceding section, 

mathematical theories may acquire empirical content by explaining empirical 

phenomena, then the existence of a variety of explanations entails the existence of a 

variety of ways mathematical theories may acquire empirical content. Here are three 

quite different cases. 

First, Baker (2005, pp. 231–233) argues for the explanatory role of applying a 

number-theoretic theorem (life-cycle periods of cicadas that equal a prime number 

of years minimize their intersection with the life-cycle periods of cicada predators). 

Suppose, contra Saatsi (2011, pp. 144–145), that Baker were correct in the role 

mathematics plays in accounting for the length of cicada life-cycle periods. 

Biologists could be quite content to import a result from mathematics (it would 

provide a strong prediction but spare the need for testing it unless a blatant 

counterexample ensues), though, qua biologists, they might just as well be oblivious 

to details of number theory that make the theorem possible, e.g., that first-order 

Peano arithmetic has no finite models because of the mathematical induction axiom 

                                                           
2 For example, fruitful generalizations and proofs are often said to be explanatory (Mancosu 

2008, p. 144), where fruitfulness not only gives formal manipulability, but also “the idea of a proof” in 

mathematical reasoning, or, in empirical science, omitting causal details about how the process modeled 

is supposed to work in a way that is revealing about some basic features of that process (Batterman’s 

(2010, pp. 18–19) asymptotic explanation). Colyvan (2014, p. 71) also approaches generalizability, but 

through structure reinterpretability, by drawing analogies between structures posited by different 

branches of empirical sciences as a way to cut short the need for further empirical research. What this 

variety of approaches suggests is that the topic of mathematical explanation is still underexplored 

(Mancosu 2008, p. 148), and we may expect to find different kinds of mathematical explanation 

(Batterman 2010, p. 23). 
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(Mendelson 2010, Proposition 3.6(b), p. 158). In other words, biologists could be 

satisfied to cherry-pick a number-theoretic result (an application of the concept of 

primeness to the abstract entities, the numbers 13 and 17) without undertaking 

ontological or conceptual commitments to any other parts of number theory 

(Azzouni 1997, p. 207). If this is the more parsimonious picture of the cicada 

example, it would be difficult to say number theory enjoys empirical content, as 

opposed to just the theorem in question. The resulting picture, with insulated results 

enjoying empirical content, would do little to support the claim that mathematical 

theories enjoy empirical content (provided a Quinean semantic holism is rejected). 

A second and slightly more complex example borrowed from population 

biology is given by Colyvan (2014, pp. 64–67). He presents the Lotka-Volterra 

equations for how the rates of predator and prey populations covary, and notes that, 

for these equations to be used, differential calculus is indispensable. Here, unlike the 

cicada case, it is not that one single mathematical result is used, but that a very 

important fragment of calculus is in play: how to solve differential equations, what 

the second-order derivative of a function is, that the second-order derivable function 

has to be continuous, etc. Colyvan’s example then supports Batterman’s (2010,  

pp. 2–8) suggestion that operations (e.g. functional derivation) can be indispensable, 

just as concepts and entities can be, as intermediary steps between using specific 

mathematical results, and employing whole mathematical theories. That a significant 

amount of mathematical theory is involved in the Lotka-Volterra equations is 

undeniable, and seemingly essential to the current formulation of the foundations of 

population biology3. In the Lotka-Volterra example, mathematics enters not only 

through calculus, but also through the idea of mathematical idealization (Batterman 

2010, pp. 16–17). One such important idealization is that the predator and prey 

population growth rates are held constant in the equations. While such a limit 

assumption (Batterman 2010, p. 19) can be removed by more advanced models  

(cf. Colyvan 2014, p. 67), it clearly tells against the idea that mathematical 

indispensability always carries with it a higher degree of theoretical complexity. 

A third example comes from mathematical physics. Here is Maddy’s 

formulation: 

For example, the calculus is indispensable in physics; the set-theoretic 

continuum provides our best account of the calculus; indispensability thus 

justifies our belief in the set-theoretic continuum, and so, in the set-theoretic 

methods that generate it; examined and extended in mathematically justifiable 

ways, this yields Zermelo-Fraenkel set theory. (Maddy 1992, p. 280) 

Notice Maddy’s inference starts from the indispensability of real calculus to 

the indispensability of ZF. First, Maddy claims that a mathematical theory is 

indispensable: the calculus. So, if the explanatory power of mathematics accounts 

for the empirical content acquired by that mathematical theory, this should be a prime 
                                                           

3 Still, Colyvan (2014, fn.14) makes the telling historical qualification that although Volterra 

was happy to employ as much mathematics as he thought useful, Lotka resisted use of more robust 

mathematical resources as much as possible. 
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example. But Maddy also goes beyond that, and claims that set theory is 

indispensable for mathematical physics. Following Maddy, a naturalist might hold 

that ZFC is a better option. Alternatively, Feferman (1992, pp. 442–443) claims that 

virtually all of the mathematics needed for purposes of physical applications can 

receive counterparts in a predicative development of the foundations of mathematics. 

Quine (1969) himself was sensitive to how foundations may be simplified, and 

attempted to carry out various constructions as far as he could: a virtual theory of 

sets, substitutional quantification, set-theoretic representatives for natural numbers, 

etc. 

But beyond the interesting mathematical question of what the most 
parsimonious foundations would look like, the conceptual move Maddy makes in 
the quote above is to say that indispensability carries over from a mathematical 
theory to the foundations that make it possible. In other words, Maddy is claiming 
that indispensability is transitive: if a version of set theory is indispensable for 
continuum mathematics, and if continuum mathematics is indispensable for 
mathematical physics, then set theory is indispensable for mathematical physics. If 
this were true, by parity of reasoning, the empirical content ascribed to mathematical 
theories would also carry over to their foundations. This would have the startling 
consequence that the foundations of mathematics would be that mathematical field 
of inquiry enjoying the most empirical content, as opposed to the more traditional 
one according to which applied mathematics is the closest to empirical phenomena. 
While Maddy’s point raises an interesting question (a different type of 
indispensability), the extension to ascribing empirical content to mathematical 
foundations seems prima facie implausible. 

To review, I have suggested in this section that there may be a variety of 
mathematical involvement in empirical theories, involvement that trades on the 
explanatory role of mathematics, and which would, via their explanatoriness, endow 
portions of mathematics with empirical content. Such different degrees of involvement 
might vary as widely as the use of one single number-theoretic theorem (in the cicada 
case), and to the essential use of smaller or large fragments of the calculus in 
population biology (via the Lotka-Volterra equations) and in mathematical physics. 
To speak of empirical content for mathematical theories, one would have to consider 
the third, and perhaps also the second, examples. 

§5. REPRESENTING AND EXPLAINING 

But do such uses of mathematics in the empirical sciences count as genuinely 
explanatory or as merely representational? A variety of critics have made what seem 
to be similar points. Assessing the cicada example, Saatsi (2011, p. 152) concludes 
it shows that a number-theoretic applied relation represents a biological fact, rather 
than explain it. Melia (2000, p. 473) claims that, in physical measurements, numbers 
index quantities rather than number-theoretic relations explaining facts about the 
quantities measured. Batterman (2010, pp. 11–19) discusses Pincock, and Bueno and 
Colyvan’s views. Pincock argues in favor of the mapping account of mathematical 
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application, on which mathematical structures are mapped (partially mapped for 
Bueno and Colyvan) onto physical structures, and this would be one of the most 
important ways in which mathematics is applied and could be explanatory. 

There are differences among these authors, and objections have been raised to 
such views (Batterman 2010, pp. 16–19). But perhaps the crucial move that I believe 
is common to them is a question that can be phrased both in indispensability-talk and 
in content-talk. If indispensability of mathematical structures amounts to nothing 
more than their mapping onto physical structures, then an open question is why, and 
in what circumstances, such mappings may end up being explanatory. If empirical 
content is acquired by mathematical theories on the basis of their indispensability in 
currently best explanations of empirical phenomena, then the question of whether 
mathematical theories enjoy empirical content amounts to looking for mappings 
between the physical systems and the mathematical structures applied, and to further 
claiming that the some of the mappings found are explanatory. Those skeptical about 
indispensability, or about empirical content of mathematical theories, can then go on 
to deny the second conjunct. Those friendly to both indispensability and empirical 
content of mathematics may affirm that same conjunct. 

Obviously, how plausible the indispensability-cum-explanatoriness claim will 
be will vary with the example chosen, but it will also vary with one's theory of 
explanation. Adepts of an exclusively causal theory of explanation may find it hard 
to see how mathematical abstracta could explain concrete (thereby causal) processes 
and events. Adepts of a unification theory of explanation may find it difficult to 
understand why empirical scientists may wish to resist mathematization. Adepts of 
a pragmatic theory of explanation may wonder why the success of applied 
mathematics is worth explaining, and hence why indispensability should mean 
anything more than mathematical application that pays off in empirical terms. 

 
I would like to conclude this paper by tracing back its steps. (1) Throughout 

the text, I have highlighted how questions of indispensability and questions of the 
empirical content of mathematical theories, although different, can fruitfully inform 
one another. (2) I have elaborated on what it might mean to say that mathematical 
theories enjoy empirical content, in terms of the modal status of mathematical truths, 
the confirmation of applied mathematics, and the explanatoriness of applied 
mathematics. (3) I have suggested that modal or confirmational terms are not 
appropriate for establishing whether mathematical theories enjoy empirical content. 
(4) I have suggested there is a variety of different kinds of mathematical explanation, 
and so if empirical content of mathematical theories is conceived of in terms of 
explanation, then there is a variety of ways in which mathematical theories may 
come to possess empirical content. (5) Consequently, indispensability arguments can 
no longer be blanket arguments, so we have to ask which portions of mathematics 
are indispensable in the best current explanation of which empirical phenomena.  
(6) In doing so, which theory of explanation is espoused plays a major role in the 
assessment of whether mathematics is explanatory or merely representational.  
The area of distinctively mathematical explanation clearly deserves further study  
(cf. Mancosu 2008, p. 148), including how it might inform theories of explanation 
in the philosophy of science. 
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